Genetic analysis of the bipolar pattern of bud site selection in the yeast Saccharomyces cerevisiae.
نویسندگان
چکیده
Previous analysis of the bipolar budding pattern of Saccharomyces cerevisiae has suggested that it depends on persistent positional signals that mark the region of the division site and the tip of the distal pole on a newborn daughter cell, as well as each previous division site on a mother cell. In an attempt to identify genes encoding components of these signals or proteins involved in positioning or responding to them, we identified 11 mutants with defects in bipolar but not in axial budding. Five mutants displaying a bipolar budding-specific randomization of budding pattern had mutations in four previously known genes (BUD2, BUD5, SPA2, and BNI1) and one novel gene (BUD6), respectively. As Bud2p and Bud5p are known to be required for both the axial and bipolar budding patterns, the alleles identified here probably encode proteins that have lost their ability to interact with the bipolar positional signals but have retained their ability to interact with the distinct positional signal used in axial budding. The function of Spa2p is not known, but previous work has shown that its intracellular localization is similar to that postulated for the bipolar positional signals. BNI1 was originally identified on the basis of genetic interaction with CDC12, which encodes one of the neck-filament-associated septin proteins, suggesting that these proteins may be involved in positioning the bipolar signals. One mutant with a heterogeneous budding pattern defines a second novel gene (BUD7). Two mutants budding almost exclusively from the proximal pole carry mutations in a fourth novel gene (BUD9). A bud8 bud9 double mutant also buds almost exclusively from the proximal pole, suggesting that Bud9p is involved in positioning the proximal pole signal rather than being itself a component of this signal.
منابع مشابه
Yeast BUDS, Encoding a Putative GDP-GTP Exchange Factor, Is Necessary for Bud Site Selection and Interacts w ith Bud Formation Gene BEAM
Cells of the yeast S. cerevisiae choose bud sites in an axial or bipolar spatial pattern depending on their cell type. We have identifted a gene, BUDS, that resembles BUD1 and BUD2 in being required for both patterns; bud5mutants also exhibit random budding in all cell types. The BUD5 nucleotide sequence predicts a protein of 533 amino acids that has similarity to the S. cerevisiae CDC25 produc...
متن کاملA Role for the Actin Cytoskeleton of Saccharomyces cerevisiae in Bipolar Bud-Site Selection
Saccharomyces cerevisiae cells select bud sites according to one of two predetermined patterns. MATa and MAT alpha cells bud in an axial pattern, and MATa/alpha cells bud in a bipolar pattern. These budding patterns are thought to depend on the placement of spatial cues at specific sites in the cell cortex. Because cytoskeletal elements play a role in organizing the cytoplasm and establishing d...
متن کاملA genomic study of the bipolar bud site selection pattern in Saccharomyces cerevisiae.
A genome-wide screen of 4168 homozygous diploid yeast deletion strains has been performed to identify nonessential genes that participate in the bipolar budding pattern. By examining bud scar patterns representing the sites of previous cell divisions, 127 mutants representing three different phenotypes were found: unipolar, axial-like, and random. From this screen, 11 functional classes of know...
متن کاملPatterns of bud-site selection in the yeast Saccharomyces cerevisiae
Cells of the yeast Saccharomyces cerevisiae select bud sites in either of two distinct spatial patterns, known as axial (expressed by a and alpha cells) and bipolar (expressed by a/alpha cells). Fluorescence, time-lapse, and scanning electron microscopy have been used to obtain more precise descriptions of these patterns. From these descriptions, we conclude that in the axial pattern, the new b...
متن کاملRole of Endocytosis in Localization and Maintenance of the Spatial Markers for Bud-Site Selection in Yeast
The yeast Saccharomyces cerevisiae normally selects bud sites (and hence axes of cell polarization) in one of two distinct patterns, the axial pattern of haploid cells and the bipolar pattern of diploid cells. These patterns depend on distinct sets of cortical-marker proteins that transmit positional information through a common signaling pathway based on a Ras-type GTPase. It has been reported...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular and cellular biology
دوره 16 4 شماره
صفحات -
تاریخ انتشار 1996